Friday, February 19, 2010

Gaming Brains Gain

Just as we shape our tools, our tools shape us. They change our capabilities and our expectations—and can change how we perceive the world. Now, as the 40th anniversary of the Internet slips by, researchers are asking how new and powerful digital technologies are transforming the brains that use them.

The last few months has witnessed many important research findings on the benefits of video gaming:

  1. Video gaming improves visual perception, processing and attention.
  2. Internet use engages more neural circuitry than book reading in the digital generation
  3. Sizes of three structures in the brain can predict a video gamer's success.
  4. Learning environments of video games can educate children effectively.
  5. Building computer games promotes critical thinking and creative thinking skills.

This posting discusses how these discoveries build on our knowledge of the gaming brain and also how Neuropath Learning programs harness the power of game based learning to stimulate cognitive development.

[Although the word "video" is still widely used, here it refers to all forms of interactive digital games, whether played on a computer, over the internet, on a smart phone, a hand held gaming device, and other gaming consoles etc.]

Vision and the video game

Video games may seem an unlikely tool for brain research, but Daphne Bavelier and her team at the University of Rochester have, over several years, conducted numerous experiments that reveal how playing computer games affects the human visual system. “Research on action video game playing is providing a lot of information about how malleable the brain really is,” says her sometime collaborator Matt Dye, a professor of speech and hearing science at the University of Illinois at Urbana-Champaign. In 2009, six new publications from there lab showed how development of visual spatial skills, visual attention, perceptual skills, contrast sensitivity, visual learning and processing speed are all enhanced by virtue of video gaming

One area of interest has been “visual attention,” the ability to focus on an object, event, or feature within the visual field. Unlike “paying attention,” which can be consciously controlled, visual attention happens automatically in the brain, for example, when we read, drive, or interact with other people.

One measure of visual attention is the attentional blink. After one stimulus is perceived, the visual system is “blind” to another for a short period of time. That “blink” may reflect the time a brain needs to switch from one task to the next. While a student in Bavelier’s lab, Shawn Green (now at the University of Minnesota) found that skilled players of action video games have a shorter attentional blink than non-gamers or players of slower simulation-type games. Some people, including Green himself, have no measurable blink at all.

Green also studied the number of objects that the visual system can perceive at once. Without deliberately counting, game players easily track five objects, while non-game players stop at three. With more objects, the brain needs to count; again game players excel, counting more accurately and making fewer mistakes.

Dye and Bavelier recently tested children for their ability to search for a target. The researchers also measured recovery time after attending to a target as well as the number of objects the children could track simultaneously. Their research demonstrated that these visual capacities develop at different times and at different rates as children mature.

On all three measures, however, action game players performed better than non-gamers, no matter what the stage of development. The researchers ruled out the idea that gamers have better attentional skills to begin with (and, perhaps, choose to play computer games for that reason). Training studies show that learning, not inborn skill, makes the difference. When volunteers are trained to play action video games, their visual attention scores increase.
“Training on action video games enhances performance across a range of visual skills,” says Dye. Such research, says Green, has implications for education. Children who play video games may learn better if educational materials and presentations match their enhanced visual and attentional skills. It has also been suggested that video game playing may be used to reduce gender differences in visuospatial cognition.

In many everyday situations speed is of the essence. In their latest paper, Dye, Green and Bavelier show that the every act of playing video games, significantly reduces reaction times without sacrificing accuracy. But perhaps the most exciting news is that the increased speed of processing video gamers develop is generalized as evidenced by transfer to wide variety of attentional and perceptual tasks beyond gaming situations.




Imaging Brain - Machine Interaction

Although all people can seek to improve their cognitive skills with the use of video games, not all gamers show the same level of success, some learn faster than others. As it turns out, how well you learn from a video game is predetermined by the size of certain structures within your brain. Last month researchers showed that they can predict your performance on a video game simply by measuring the volume of specific structures in your brain.

The new study found that nearly a quarter of the variability in achievement seen among men and women trained on a new video game could be predicted by measuring the volume of three structures in their brains.

The study adds to the evidence that specific parts of the striatum, a collection of distinctive tissues tucked deep inside the cerebral cortex, profoundly influence a person's ability to refine his or her motor skills, learn new procedures, develop useful strategies and adapt to a quickly changing environment.

"This is the first time that we've been able to take a real world task like a video game and show that the size of specific brain regions is predictive of performance and learning rates on this video game," said Kirk Erickson, a professor of psychology at the University of Pittsburgh and first author on the study.

This study suggest that pre-existing individual differences in the brain might predict variability in learning rates.

Animal studies conducted by Graybiel and others led the researchers to focus on three brain structures: the caudate nucleus and the putamen in the dorsal striatum, and the nucleus accumbens in the ventral striatum.

"Our animal work has shown that the striatum is a kind of learning machine -- it becomes active during habit formation and skill acquisition," Graybiel said. "So it made a lot of sense to explore whether the striatum might also be related to the ability to learn in humans."

The caudate (CAW-date) nucleus and putamen (pew-TAY-min) are involved in motor learning, but research has shown they are also important to the cognitive flexibility that allows one to quickly shift between tasks. The nucleus accumbens (ah-COME-bins) is known to process emotions associated with reward or punishment.

The researchers began with a basic question about these structures, Kramer said: "Is bigger better?" They used high-resolution Magnetic Resonance Imaging (MRI) to analyze the size of these brain regions in 39 healthy adults (aged 18-28; 10 of them male) who had spent less than three hours a week playing video games in the previous two years. The volume of each brain structure was compared to that of the brain as a whole.

Participants were then trained on one of two versions of Space Fortress, a video game developed at the University of Illinois that requires players to try to destroy a fortress without losing their own ship to one of several potential hazards.

Half of the study participants were asked to focus on maximizing their overall score in the game while also paying attention to the various components of the game.

The other participants had to periodically shift priorities, improving their skills in one area for a period of time while also maximizing their success at the other tasks.

The latter approach, called "variable priority training" encourages the kind of flexibility in decision-making that is commonly required in daily life, Kramer said. Studies have shown that variable priority training is more likely than other training methods to improve those skills people use every day.

The researchers found that players who had a larger nucleus accumbens did better than their counterparts in the early stages of the training period, regardless of their training group. This makes sense, Erickson said, because the nucleus accumbens is part of the brain's reward center, and a person's motivation for excelling at a video game includes the pleasure that results from achieving a specific goal. This sense of achievement and the emotional reward that accompanies it is likely highest in the earliest stages of learning, he said.

Players with a larger caudate nucleus and putamen did best on the variable priority training.

"The putamen and the caudate have been implicated in learning procedures, learning new skills, and those nuclei predicted learning throughout the 20-hour period," Kramer said. The players in which those structures were largest "learned more quickly and learned more over the training period," he said.

"This study tells us a lot about how the brain works when it is trying to learn a complex task," Erickson said. "We can use information about the brain to predict who is going to learn certain tasks at a more rapid rate." Such information might be useful in education, where longer training periods may be required for some students, or in treating disability or dementia, where information about the brain regions affected by injury or disease could lead to a better understanding of the skills that might also need attention, he said.

Your brain online

While Bavalier and her colleagues have used behavioral tests, other researchers are taking a more direct route, using imaging technologies to measure brain activity while volunteers use a computer.

The idea has been around for a while. In 1992, Richard Haier and his team at the University of California, Irvine, reported on positron emission tomography (PET) scans of eight young men while they played the computer game Tetris. Haier measured the rate of glucose use in the cerebrum before the volunteers practiced the game and after four to eight weeks of practice.
Haier found that, while game scores rose by a factor of 7, the brain’s use of glucose declined with practice. Furthermore, those subjects who improved their Tetris performance the most showed the largest decreases in glucose metabolism after practice. Haier concluded that changes in cognitive strategy are part of the learning process. As a skill is mastered, the brain finds more efficient circuits for performing it.

Gary Small is a professor of psychiatry at the University of California, Los Angeles. Last January, he and his team reported on a functional magnetic resonance imaging (fMRI) study that compared patterns of brain activation during reading and internet searching in older people. The UCLA team worked with 24 healthy volunteers between the ages of 55 and 76. Half were new to internet use, while the other half had considerable experience. The researchers found that the pattern of activity in the brain while reading a book page was similar in the two groups. Inexperienced individuals displayed a similar pattern to book-reading when they searched online. The big difference appeared when the savvy volunteers searched online. “We found a twofold increase in activity throughout the brain, especially the frontal lobes,” Small says

At the 2009 meeting of the Society for Neuroscience in Chicago, Small extended those findings, reporting on scans of brain activity after the inexperienced subjects practiced internet searching for 7 hours over two weeks.

After an initial brain scan, participants went home and conducted internet searches for one hour a day for a total of seven days over a two-week period. These practice searches involved using the internet to answer questions about various topics by exploring different websites and reading information. Participants then received a second brain scan using the same internet simulation task but with different topics.

The first scan of participants with little internet experience demonstrated brain activity in regions controlling language, reading, memory and visual abilities, which are located in the frontal, temporal, parietal, visual and posterior cingulate regions, researchers said. The second brain scan of these participants, conducted after the practice internet searches at home, demonstrated activation of these same regions, as well as triggering of the middle frontal gyrus and inferior frontal gyrus – areas of the brain known to be important in working memory and decision-making.

Thus, after internet training at home, participants with minimal online experience displayed brain activation patterns very similar to those seen in the group of savvy internet users – after just a brief period of time.

"The results suggest that searching online may be a simple form of brain exercise that might be employed to enhance cognition in older adults," said Teena D. Moody, the study's first author and a senior research associate at the Semel Institute at UCLA.

When performing an internet search, the ability to hold important information in working memory and to extract the important points from competing graphics and words is essential, Moody noted.

“Performing internet searches for even a relatively short period of time can change brain activity patterns and enhance function," Small says.

What is even more compelling is the far greater brain activity that occurs with "computer learning" vs "book learning". Dr. Small's findings indicate that internet searching appears much more stimulating than reading. In fact a direct comparison showed that the internet task demonstrated strongly enhanced activity in visual cortices when compared with the reading task in internet savvy subjects, although the actual visual stimuli were identical. This observation suggests that in the internet task the subjects were attending far more to the visual information and demonstrating a richer sensory experience.



Brain training

For that reason, a number of organizations and companies are developing computer-based brain-training programs designed to enrich a healthy brain.

One brain-training program is an online version of a memory-challenging computer game developed by University of Michigan researchers and assessed in a study published in the Proceedings of the National Academy of Sciences last April. Susanne Jaeggi and her team reported that their game increased short-term working memory, which was its intended purpose. But it achieved more. It also improved “fluid intelligence,” which is the ability to solve novel problems independently of previous learning.

The Michigan study stands among only a few that have demonstrated transfer of one learned skill to another cognitive domain. The Michigan study also demonstrated a dose effect: the more time people spent using the program, the greater their improvement in both memory and fluid intelligence.


Such research has also spawned a host of efforts to use computers in rehabilitating aging, dysfunctional or damaged brains. These studies are still in the exploratory phase. Small, for example, has collaborated in the development of the Dakim Brain Fitness Unit, a touch-screen system that is available in assisted-living facilities.

Other researchers are experimenting with computer-based systems designed to help disabled patients regain or enhance specific sensory or motor abilities. For example, Susan Brown’s Motor Control Laboratory at the University of Michigan is using a home- and Internet-based training program to improve upper limb and hand function in adults with cerebral palsy. Lucia Vaina’s Neurovisual Clinic at Boston University designs, develops, and tests computer applications to restore visual skills lost in some stroke patients.

Video games for learning

Some parents might see video games as an impediment to children keeping up with their schoolwork. James Gee, however, thinks video games are some of the best learning environments around. He says that if schools adopted some of the strategies that games use, they could educate children more effectively.

"Commercial video games, the ones that make a lot of money, are nothing but problem-solving spaces," says Gee, the Mary Lou Fulton Presidential Chair in Literacy Studies in the Mary Lou Fulton Institute and Graduate School of Education at Arizona State University.

Gee was one of the first scholars to examine the educational potential of video games. In 2004 he wrote one of the earliest books about how games use good learning principles -- What Video Games Have to Teach Us about Learning and Literacy.

Video games optimize learning in several ways. First, games provide information when it is needed, rather than all at once in the beginning.
"We tend to teach science, for example, by telling you a lot of stuff and then letting you do science. Games teach the other way. They have you do stuff, and then as you need to know information, they tell it to you," Gee explains. In school, very often you get a lot of words and you don’t get to use them until much later. By the time you use them, you’ve forgotten them. In a game you’re going to get them right when you can use them and see how they apply.”

Games also provide an environment that is "pleasantly frustrating." They are challenging but doable. Games try to stay within, but at the outer edge of, your regime of competence. "That's a very motivating state for human beings. Sometimes it's called the 'flow' state," says Gee. At first you might be blown away by how difficult a game is but this is usually because you are learning something new. Once you stop worrying about failing – something schools consider negative – you start enjoying the experience.

Gee describes video game environments as “situated learning” because the player is situated in an actual problem-solving space.

Assessment is a controversial issue in education today. One thing games can teach us is how to manage assessment better. Currently, schools use standardized tests administered by an outside testing industry. In games, however, assessment and learning are tightly married. Games constantly assess player performance and provide feedback. The game can collect an incredible amount of data on each player's performance and present it statistically.

“We have a standardized testing regime that is focused on skill and drill and facts, not problem-solving," Gee said. "How do we change our assessment regime so that we favor innovation, critical thinking and problem-solving? Then it would fit with the situated learning we’re talking about." Integrating learning and assessment also is less expensive than supporting an independent testing industry. “And you’re not teaching to a test, you’re teaching to your actual learning goals – the goals that you hold regardless of a testing industry,” Gee said.

Another feature of gaming that could apply to education is the practice of “modding.” Many game developers invite players to modify their products. They share the software and encourage user to create things like new maps or scenarios.
Gee says schools could enhance learning by inviting students to “mod” lessons.
“Think about it," Gee said. "If I have to make the game, or a part of the game, I come to a deep understanding of the game as a rule system. If I had to mod science – that is, I had to make some of my own curriculum or my own experiments – then I’d have an understanding at a deep level of what the rules are.”
He noted that educators do not need to use actual computer-based games to incorporate these educational principles. In fact, good teachers have always done these things intuitively.

Games have grown up, and lots of grown-ups are paying attention. Some parents might still see video games as time-wasters. But a growing number of people – from teachers to researchers to policymakers – are seeing great educational potential in these virtual environments. In fall 2009, the Quest to Learn school for kids in grades 6-12 opened in New York City. The school, created in part with a grant from the MacArthur Foundation, uses the underlying design principles of games as the basis of its curriculum. The idea that educators can learn from the gaming industry is now becoming increasingly popular.

Game building: a creative challenge

But why just stop at playing digital games why not build you own? Computer games have a broad appeal that transcends gender, culture, age and socio-economic status. Now, computer scientists in the US think that creating computer games, rather than just playing them could boost students' critical and creative thinking skills as well as broaden their participation in computing. They discuss details in the current issue of the International Journal of Social and Humanistic Computing.

Nikunj Dalal, Parth Dalal, Subhash Kak, Pavlo Antonenko, and Susan Stansberry of Oklahoma State University, Stillwater, outline a case for using rapid computer game creation as an innovative teaching method that could ultimately help bridge the digital divide between those people lacking computer skills and access and those with them. "Worldwide, there is increasing recognition of a digital divide, a troubling gap between groups that use information and communication technologies widely and those that do not," the team explains. "The digital divide refers not only to unequal access to computing resources between groups of people but also to inequalities in their ability to use information technology fully."


There are many causes and proposed solutions to bridging this divide, but applying them at the educational and computer literacy level in an entertaining and productive way might be one of the more successful. The team adds that teaching people how to use off-the-shelf tools to quickly build a computer game might allow anyone to learn new thinking and computing skills. After all, they explain, the process involves storytelling, developing characters, evaluating plots, and working with digital images and music. Indeed, their preliminary survey of this approach shows largely positive effects. Rapid computer game creation (RCGC) sidesteps the need for the students, whether schoolchildren or adult learners, to have any prior knowledge of computer programming.

Traditionally, various groups have stereotypically been excluded from computing to some degree, including women, seniors and people who don't consider themselves as mathematically minded. Dalal and colleagues suggest that their approach circumvents most of the issues and provides a lead into computing that would otherwise not be apparent.

With RCGC becoming increasingly popular in schools and universities, the team suggests that the next step will be to develop yet more effective teaching models using RCGC and to investigate the conditions under which it works best in improving critical and creative thinking and developing positive attitudes to computing among different groups by gender, age, nationality, culture, ethnic group, and academic background.

Students today are digital natives; what they have mastered is not a technology, but the change of technology.

Neuropath Learning Games

Research is now catching up with and slowly proving what we here at Neuropath Learning have believed to be true for a long time now. Neuropath Learning programs incorporate game based learning principles into an educational tool for students and teachers.

Neuropath Learning games are challenging and motivating. Our games combine learning with assessment. They offer a means of formative assessment with constant feedback to the student. They collect a vast amount of data on student performance and present it statistically. They are not solely focused on standards but rather value critical thinking and problem solving skills as learning goals. Neuropath learning programs offer situational learning where students are virtually immersed in the real world problem solving space. Information is presented as needed and not all at once in the begining. Multiple opportunities for application of this knowledge are presented through out the game. Our games were designed on 12 years of scientific research about brain based learning, cognitive development, gaming design and communication technology.

During the past 5 years that Neuropath Learning programs have been in existance we have proved over and over again that this educational model really does work. Not only do our programs offer lessons in learning and literacy, they provide a huge amount of cognitive stimulation and training. Thus we have data showing continual improvement in student performance. The difference in gains made by students using our programs and students in the same school that didn't use our programs, is startling. We have data showing transfer of cognitive skills to standardized test scores. We have also shown a dosage effect of the cognitive training our programs provide. We showed that the more time students spend on our programs, the greater the benefits.

In just a matter of 15-60mins a day NPL programs can dramatically speed up cognitive development of a child's brain. This lays the foundations for thinking strategies that are useful throughout life. It also increases learning productivity of a class such that teachers have more time for more meaningful multisensory enrichment activities. The multimedia delivery of our programs develops right brain creative thinking and helps the visual spatial learner as much as it does the auditory-sequential learner. The programs are self paced and the data is individualized. Social cogniton is developed with equal emphasis as other academic goals and intelligence measures. These are real 21st century education programs that place the focus on the individual student and change the role of a teacher to a facilitator of learning. If you would like to know more about our programs please contact me at sutapa@neuropathlearning.com today!

References:

Striatal volume predicts level of video game skill acquisition,” Erickson KI, Boot WR, Basak C, Neider MB, Prakash RS, Voss MW, Graybiel AM, Simons DJ, Fabiani M, Gratton G, Kramer AF. Cerebral Cortex. Jan. 19, 2010.

Dye, Green and Bevalier publications on Plasticity and Video games: http://www.bcs.rochester.edu/people/daphne/publications.html

Your brain on Google: patterns of cerebral activation during internet searching.
Small GW, Moody TD, Siddarth P, Bookheimer SY. Am J Geriatr Psychiatry. 2009 Feb;17(2):116-26.

Rapid digital game creation for broadening participation in computing and fostering crucial thinking skills. Dalal et al. International Journal of Social and Humanistic Computing, 2009; 1 (2): 123

GOOD VIDEO GAMES AND GOOD LEARNING James Paul Gee

Other Sources: ASU, Science Daily and the Dana Foundation.

2 comments:

way2 college said...

NICE BLOG!!! Education in its general sense is a form of learning in which knowledge, skills, and habits of a group of people are transferred from one generation to the next through teaching, training, research, or simply through autodidacticism. Thanks for sharing a nice information.
pune university distance education

Institution Building said...

This is the first visit of me towards your blog and i got amazing informative data from here, it is amazing for me. Faculty Development Program || Institution Building || Educational Leadership